Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, Volume 1
  Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, Volume 1
Yamauchi Yusuke; Sudarsanam Putla; Bharali Pankaj
Titolo Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, Volume 1
Prezzo€ 142,99
EditoreWiley
LinguaTesto in Inglese
FormatoAdobe DRM

Descrizione
An essential companion for catalysis researchers and professionals studying economically viable and eco-friendly catalytic strategies for energy conversion In the two-volume Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, a team of distinguished researchers deliver a comprehensive discussion of fundamental concepts in, and practical applications of, heterogeneous nanocatalysis for alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection. The volumes cover the design and catalytic performance of various nanocatalysts, including nanosized metals and metal oxides, supported metal nanoparticles, inverse oxide-metal nanocatalysts, core-shell nanocatalysts, nanoporous zeolites, nanocarbon composites, and metal oxides in confined spaces. Each chapter contains a critical discussion of the opportunities and challenges posed by the use of nanosized catalysts for practical applications. Volume 1 – Energy Applications focuses on the conversion of renewable energy (biomass/solar) into green fuels and chemicals, ammonia synthesis, clean hydrogen production, and electrochemical energy conversion processes using a variety of nanosized catalysts. It also offers: A thorough introduction to heterogeneous catalysis and nanocatalysis, as well as a discussion of catalytic active sites at nano-scale range Comprehensive explorations of the methods for control and activation of nanosized catalysts Practical discussions of C3N4-based nanohybrid catalysts for solar hydrogen production via water splitting Nanosized catalysts in visible light photocatalysis for sustainable organic synthesis Applications of MXenes in electrocatalysis Perfect for researchers, postgraduate students, chemists, and engineers interested in heterogeneous catalysis and nanocatalysis, Heterogeneous Nanocatalysis for Energy and Environmental Sustainability will also earn a place in the libraries of professionals working in alternative energy production, biomass conversion, solar energy, green fuels, H2 production, fuel cells, electrochemical energy conversion processes, CO2 conversion, clean water, and environmental protection.